Sunday, 11 September 2016

CNC upgrade progress - Fixing the cracked spindle holder

 Found a solution for the cracked spindle motor bracket. It is pretty simple, but very efficient. I simply cut off the cracked side, drilled and tapped two new holes and by using the two separate bracket halves, which are some sort of a car part I found in a hardware shop, my spindle holder is as good as new, perhaps even better. The brackets I found are for 70mm exhaust pipe, 5mm more than I need, but that wasn't a problem.
To improve it further, I added a 2mm aluminum strap between the steel bracket and the spindle motor. This gives a softer grip on the motor than just the steel brackets would give.

I am quite happy with this brand new spindle holder, in fact so happy that I decided to carry on, not wait for the newly ordered spindle bracket to arrive. 
I have installed it on the Z plate and I am very satisfied with the results, so perhaps I will keep this one, and once the one I ordered arrives I will keep that one as spare.

I believe that this solution does not need an additional safety bracket since it is made up of two individual brackets. I don't think the bottom of the spindle holder will ever crack, the top part is more sensitive.

Anyway, now I can carry on with my upgrade.

Tuesday, 6 September 2016

CNC upgrade progress - Disaster strikes

I am busy upgrading my CNC, basically it is a complete rework with mechanics and electronics changed, redesigned or changed, and even the spindle is going to be replaced. Details about the mechanical upgrade are here:

Feel free to read and comment. Other posts will follow, but in the meantime here is one about a small disaster, which actually could have been a major problem and could have caused serious damage if it would have happened at a later stage.

I finished the mechanical upgrade by making a nice new Z plate during the weekend. This was necessary to make, to be able to install the three phase brush-less spindle motor which is going to replace the old DC motor I used so far.

I was busy installing the spindle motor when I noticed that the screw to slightly expand the motor bracket to be able to push the motor into it was suddenly far too easy to turn, like if I was screwing it into a block of butter. Initially I thought that the thread was worn out, but then I saw the cause. A hair thin, fine line across the motor bracket gave the immediate answer to the softness, the bracket was cracked and split in two pieces.

The crack shows that the bracket is really bad quality. It is cast aluminum, but the work is really poorly done, the material is very porous and spongy, providing practically zero flexibility, probably due to the poor material quality, or bad heating, or too low pressure during the casting process. I am not an expert in casting, but the cast aluminum sheets I normally use are much harder, stronger and definitely not look like this when cut, or drilled.

I bought a new one immediately, but this sets me back by about two weeks due to delivery time. Will take a chance of buying a similar one, but not from the same seller. Hopefully the new one will be  a bit better but if not then I'll have to find a different one and make some changes to my new Z plate.

One can say that I was still lucky because it could have been cracked during use, in which case the spindle motor would have fallen to the mill table, causing all sorts of possible damage, especially if it would have been spinning at the time of disaster.

Lessons learned

I will modify my Z plate and make this broken motor bracket into a safety holder. In case the main bracket will crack during use this will prevent the spindle motor from falling down on the table, and possibly on my hand if I would be busy changing tool or would for some other reason have my hand under it. The weight of the spindle alone is enough, even if not spinning, to push a cutter right through my hand, especially since most of the time I am using very small cutters, mostly below 2mm diameter, and also a lot of V-bits. It would create a nasty mess and I would not like to get those pushed through my hand, and I figure if I have a safety holder then the risks are really minimal.

Tuesday, 30 August 2016

CNC upgrade progress (mechanical parts)

A few months ago I decided to start an upgrade of my DIY CNC. The target was to keep the same foot print size but increase the stability and the speed, as well as the accuracy. I did not want to build a brand new one from scratch, though looking in the mirror, only the feet and the bottom frame are the same, so basically I built a completely new CNC. Z and X axes were planned to be larger than before, mainly higher, to give me more Z clearance.

Of course, this upgrade had many advantages apart from higher possible speed. Being larger means also more weight and the larger mass gives higher stability. This is definitely positive, since the old CNC had quite a lot of unwanted vibrations and was generally too weak even for milling plastics.

My plans were not just to upgrade the mechanical parts, but also the electrical parts, basically keeping only the stepper motors and the stepper drives, the BOB and the motion controller. This includes new power supply and a VFD controlled spindle as well, in other words, practically a totally new CNC.

To be able to reduce down time as much as possible I had the following workflow for the order of upgrading.

Building a new Z axis.

This was done and ready at the end of 2015. I think that building the Z is the most difficult part, mainly because it is the smallest axis with very little error margins and little possibilities to correct small mistakes. I think that’s why many people buy readily made Z axis to build their CNC around that, instead of designing and building one from scratch, like I did.

There is a short post about that work here:

I was very happy with the results of that work, especially considering the huge speed increase, the jump from 500mm/min to 1500mm/min made a huge difference and gave me a confidence to carry on with the X-beam and was certain that the rest of the mechanical upgrade will be very smooth and well worth the efforts.

Of course, the speed change was easily explained by the screw change. Originally I used an ordinary threaded stainless steel rod with 12mm diameter and 1.75mm thread pitch as lead screw and unsupported 12mm round rods. This was replaced by a 1605 ball screw with matching nut and fully supported 16mm round rods. This means that the screw now is 16mm diameter with 5mm pitch, which is 2.86 times more than the old one, and that is almost the same as the speed increase from 500 to 1500mm/min.

Also additional benefits came from the use of ball nut, which slides much better than the DIY Delrin nut I used previously, but since I still used the original 24V switching supply as stepper power supply, it seems that this was the maximum possible speed for this machine until the power supply is replaced.

The new Z axis is also considerably larger than the old one. I made it to suit a high speed brush-less spindle, not just the small DC motor I used in my first CNC. Of course, it is also much heavier, which is an advantage because it makes the machine more stable and results in less vibration.

Building a brand new X-beam 


Next step was to build a new X axis to carry the new Z. After my first version of CNC was finished I realized that the Z clearance is not enough in the long run, so now it was time to correct this design flaw and build the second version with better clearance and more stability. The new beam is much higher than my original X-beam, allowing about twice the Z clearance I had before, which I think is going to be enough for my needs.


Building the new X-beam was not that exciting, even if it took some time to do it. It is made out of 45x90 and 30x60 extruded aluminum profiles. Pretty simple, straight forward design, fairly easy to adjust and align to get the machine squared.


Once the new X-beam was ready I installed the Z on it and tested on my desk. After aligning the Z to the X and once I was ready with my tests it was time to remove the old beam and replace it with the new one. This was really easy thing to do, due to the original design, and my CNC was fully usable during the whole process except for about the 2-3 hours I needed to remove the old gantry and replace it with the new, including the necessary wiring and squaring, so I was pretty happy so far.

Of course, at this stage I still had the old and slow Y axis with the table, but I could at least use the CNC in case I needed it.

New work table and Y axis

This was the easiest part. The table is just a 15mm thick aluminum plate, with 15mm thick T-slot bed on top of that to allow fixtures and / or spoil board installation. I have also decided to build an acrylic glass frame around to prevent chips flying out of the table area. This slides in under the X-beam, so the height is limited, but it provides enough protection to prevent the chips from falling in under the bed and onto the ball screw or the horizontal linear guides under the table.

Installing the new table in the CNC frame was also very easy. Even in this case, it took less than 3 hours and basically after this installation the mechanical upgrade was done.

Safety first!

For personal safety, I also have a much higher acrylic glass frame around the whole CNC. I had this also before in my original design also, and in my opinion this is absolutely necessary. In case a tool breaks and the cutter flies off like a projectile it stops the tool from causing damage. It happened more than once that I made a mistake and heard the snapping and the loud bang when the end mill hit the acrylic wall, preventing this “projectile” from hitting me or somebody or something else in the room. I guess this is even more important with the high speed spindle and the stronger, faster CNC than it was before. Remember, safety first…

Some technical data of my current CNC

Material used (mainly, but not a complete list): 49x90 and 30x60 aluminum extruded profiles, 10mm, 12mm and 15mm thick aluminum plates, hundreds of stainless steel screws, T-slot nuts and bolts mainly in 5, 6 and 8mm diameters. Total weight is approximately 80kg, including wiring, motors and all the electronics and power supply. CNC fixed to its own feet with four lockable rubber wheels for ease of moving around.

  • Footprint (total area it is occupying in the room): 750 x 650mm
  • Table height from floor: 910mm
  • Y table size: 450 x 300mm
  • Weight of Y: 17,5kg
  • Working area: 310 x 270mm
  • Weight of X-beam: 13,7kg
  • Size of the X-beam (height x width): 500 x 540mm
  • Size of Z: 350 x 150 mm
  • Weight of Z: 8.5kg
  • Z clearance from table top: 135mm
  • Maximum speed: 1500mm/min
  • Stepper motor data: NEMA23 2.7V/phase, 3A, 1.6uh, 0.9 Ohm/phase
  • Stepper motor driver: DQ542MA
  • Power supply to stepper drivers: 24VDC 15A switching supply (to be upgraded)
  • Motion controller: UC300
  • Spindle motor: 400W 48V DC motor, maximum 12,000 RPM, 52mm diameter with ER11 collet (to be upgraded by a 24,000 RPM 1.5kW spindle)
  • Spindle motor power supply: 36VDC fed to a manual PWM speed regulator providing 9000 RPM (will be replaced by VFD)

Next upgrade steps

These steps will be described more in detail separately, this is just a list of what is coming.

New power supply

This is already finished and working. In a few words I can say that it is providing unregulated 44VDC to the stepper drivers. It is an analogue power supply based on a toroidal transformer. This new PSU allows me to increase the maximum speed to 5500mm/min, so it is a huge step forward.

Also in the box is a separate 12V and 5V supplies, these are regulated and will be used for the electronics in the control box.

New control box

It will be separated from the power supply and moved below the CNC work table. Moving the power supply and the control box to below the table will increase the balance since the centre of gravity will move down with these items as well, which is an advantage in stability.

New spindle and a VFD

I bought a Bosch Rexroth EFC 5610 VFD from a UK company and a cheap Chinese air cooled 1.5kW high speed spindle with ER11 collet from an eBay dealer. It is tested and working but not yet installed. The VFD and the spindle will be controlled via RS485 and Modbus, using the functions provided in Mach3. I think this is a much better and safer solution than using digital outputs and 0-10V. Of course, the new spindle means some modification of the Z axis, but it will be worth the efforts.

Thank you for now, stay tuned, I’ll be back.

Sunday, 1 May 2016

Using a ring flash on Nikon 1 V series camera

The V2F1A and a ring flash

One of the advantages of the V2F1A adapter is that it enables the camera, not only to use larger and more powerful flashes, but also to use a ring flash, which in many cases might be necessary.

The advantages of using ring flash

Ring flashes are frequently used by macro photographers, as well as product photographers and of course, even by medical or dental photographers. In general, a ring flash is very useful everywhere where there is not a lot of space between the camera and the subject, or where the camera lens can obstruct far too much light, or even cause serious shading.

I provide some sample images, the one on the right is a ruler, the full image coverage is about the same size as the Nikon 1 camera sensors, so the 13mm covered is equal to 1:1 magnification. Please note that the images are not cropped, just resized.

The next sample image is more of a "real thing", an example of an image taken in a very narrow space, where taking an image without a ring flash would have been difficult due to the problems one would encounter setting the lights up.

The third and fourth sample images are an eye. This is also normally pretty difficult because it requires a lot of light. Taking it with a ring flash which is in manual mode, no TTL pre-flash, and with the flash set to 1/128 of full power means that it is not uncomfortable for the model and not as blinding as a normal flash would be, or if available lights would be strong enough. Of course, the depth of field (DoF) is very narrow, so it is not easy if you want the whole eye in focus. These images are just some quick examples, not exactly work of art, but they demonstrate well some different use of a ring flash.

The disadvantages of using a ring flash

In some cases the the flash can demonstrate dual shadows, left and right of the subject. This is not very nice, but if the light is carefully adjusted between the left and the right tube then the dual shadows are avoided. Not all ring flashes have this possibility, mine has. Dual shadows are not always a problem, and especially in macro images, this is basically invisible. Some people use ring flash for model photography, but in my opinion, a ring flash is not suitable for that purpose because the light is far too even and flat, very boring and featureless for portraits. Never the less, photographic tastes are different, what is my taste is just my taste, must not necessarily be accepted by everyone, and some people prefer flat light for portraits.

Another disadvantage of using a ring flash is that considering it's GN power, they are pretty heavy. The one I have is only a GN14 (meters) flash and it is almost as heavy as the SB-900, which is a considerably more powerful flash. This means that the ring flash can not be used on a Nikon V camera as you would use it on a much larger DSLR. The ring flash must be mounted on a bracket and triggered using a PC cord. Mounting directly in the V2F1A would mean a heavy load on the flash shoe and risk causing problems, like contact failure or even some damage to the the camera or the flash or the adapter.

A third disadvantage in respect to the Nikon 1 cameras is that the Nikon 1 lenses are very small, light and most of them have plastic tubes. This means that the weight of the ring flash head is simply too much for those, especially the 10-30mm and the 30-110mm lenses. These are the only Nikon 1 lenses I have, but I would not use a ring flash on these, not only because these are also plastic lenses, but also because these are zooms with an expanding front, so these are not made to hold more than a filter and a hood. A ring flash is best used on a fixed focal length lens, or at least a heavier, more robust zoom.

Never the less, using a ring flash can be very rewarding and once mastered, pretty easy. It is very nice to use it in places where there is not much space and where the lights can not be set up in a way so that it suits the scene. Every time one needs to get close to the subject and there is not enough light or there is a risk for serious shading the use of a ring flash is really a great way if improving images, making it easier to take and with better results.


Please note that the V2F1A is not supporting iTTL, so it is important that the ring flash has manual settings as well.

Note that the sample macro images in this post were taken with the Nikon 1 V1 and the Nikon AF-S Micro Nikkor 60mm f2.8 macro lens. The flash was set to 1/128 power due to the short distance to the subject. If the flash would have been used at full power the image would have been washed out, completely white and overexposed.

The ring flash must be connected to the V2F1A through a sync cord and the flash must be mounted on a bracket, not on the V2F1A.

Please note that the images in this post are clickable, if you wish to see a larger image, just click on the image.

For more details about the V2F1A adapter or how to buy it, please visit my other posts, specifically start with this post:

Saturday, 26 March 2016

Making a pen holder for my CNC

This post is about how to make a pen holder. It took me about one hour to figure out how to make it and to actually make it, so it is really simple if you have the material and the tools. Click on the images if you want to see them larger.

My CNC upgrade project is progressing quite well. All axes are now up and running, most of the mechanical upgrade works are done, so it is time for a test ride. I didn't immediately wanted to start with milling just to test accuracy, so I decided to use the good old cheap and very clean pen method, which simply means that instead of milling real material place a pen on the Z and use that, not the spindle motor. Basically, this converts the CNC into an old flat bed plotter, except that it can't read HPGL files, which is the most common file type for plotters.

I created a G-code pattern manually and tried it out with an ordinary permanent marker pen. Of course, the results were not so pleasing. Not because there was anything wrong with my CNC, but it isn't really possible to use a pen instead of a spindle, at least not this way, by simply fixing the pen on the spindle holder.

Failed first test, with ugly results

The paper to draw on was on the spoil board, which is MDF, not the very best surface for the purpose, especially since it has been used on my CNC version 1, so it had some marks on already. Also the ink in the pen made the paper soft, the paper expanded under the pen, got soaked and became soft as soon as the pen was lowered if the pen was not moving. Finding the Z zero was also tricky, and by the time I was happy with the Z zero position, the tip of the pen was no longer thin enough to be able to measure any accuracy.

Time for a "Plan B"

I needed a proper pen holder, one which allows constant pressure but in a flexible way, like when we, humans, are using a pen. I didn't want to buy something so simple, so I decided to make one. The principles of mechanism for a plotter pen holder is pretty simple. You need a pen, something to install the pen in and a spring which allows to apply pressure but without pushing the pen into the paper and the table beneath and without breaking the tip of the pen.

Click on the image for a closer look if you decide to copy my design.

Finding a pen was easy. Just look for a good enough ball point refill, one which can be used at high speeds without leaving stain or interruption in the lines. I decided to use a pop rivet to actually push the pen down with the help of a small, short coil spring. The spring which was in the pen was of no use, I needed the type with two ears.

Next step was the actual design of the holder. I decided to use 15x15 mm U profile. Marked all the places for wholes, the cut and the bend and that's it. Simple, but very functional.

The reason why it is so long is that I wanted to be able to use it even if I'd have a tool in the spindle, without the need of removing the tool. This makes it useful even in the future, after I am ready with the initial tests.

It was time to go out to my tiny work shop to cut, drill and bend, in other words, to actually make the pen holder.

I was a bit too eager to get it done and to get started with my CNC tests, so I did not do a very nice work concerning cutting and bending. Never the less, it is good enough for the purpose.

The pop rivet is cut to about half the length to be able to easily remove, or change the pen any time I'd like to do so. Maybe I want to change colour or use a different pen... you never know. With the shorter pop rivet it is easy to do that, without the need of a screw driver.

Time for a final assembly. A short aluminium tube is going to be used for preventing the pen to fall through the hole when the pen is lifted up.I decided not to use that exclusive Parker but went for a cheap plastic copy instead. The drawback of that decision is that the hole where the tip is going through is a bit too large, but that doesn't really matter for the moment.

It looks pretty neat on the spindle holder. After installation I placed a sheet of acrylic glass on the waste board and fixed a sheet of paper on top of it. The work origins were set up manually, setting Z zero was no longer an issue since the pen had a spring, so it was flexible. I lowered about 2mm below the paper surface to give enough pressure and quickly tested just by manually driving X and Y across the table at maximum speed, which is for now 1500 mm/min, and was very happy. So I replaced the paper sheet with a fresh one, loaded the G-code for my test pattern and started the program.

I must say that I am very pleased with the results.

After the first run, I removed the paper sheet to check the angles and all the dimensions with a caliper and a protractor. This is not the most accurate method but good enough to give me a clue if I would have some serious problems. The 90 degree angles read 90 degrees, circles were exactly as I designed, 50, 100 and 150 mm in diameter, checked from various angles, and the writing looked very good as well.

I replaced the paper sheet once again and run the same G-code four times to see how repeatability is and what difference would be visible after that. Practically no difference at all, except that the print which was run four times looked stronger due to the fact that all the lines were drawn four times, which is normal. So I am very happy with the results and will test mill as soon as I have time for doing it.

Feel free to use my idea of this simple pen holder. It will serve me well in the future, even for testing G-code of the objects I plan to make with my CNC.

Finally, I finished editing the video and published it tonight. Have a look and enjoy.

Monday, 28 December 2015

My DIY CNC upgrade project, the Z axis upgrade

I started with a major upgrade of my DIY CNC. The CNC, including the upgrade, is 100% of my own design, there is a long story about it here. 

The first version had its issues, and while it served me well, it is now time for a major upgrade. All axes will be replaced by new, much better designed ones.

One main mechanical upgrade was the changing from unsupported steel rods which made up the horizontal and vertical slides to fully supported and much stronger ones. The Z axis had 10mm rods, the X and Y had 12mm rods. All those are now 16mm fully supported.

The other thing was the lead screws. In my version one I used 12mm stainless steel threaded rods with 1.75mm pitch and the lead nuts were made of acetal (POM), all individually taped by a piece of the threaded rod, which I made a tap of and threaded the lead nuts with to get zero backlash. This worked very well, but the speed was slow, maximum 500mm / minute. These are now replaced with 16mm ball screws and ball nuts. Of course, the speed increased significantly, a quick test bench run shows 1500mm / minute without problems. I could probably get more with higher power supply voltage, but that's for the future.

Even some parts of the electronics will be redesigned when I am done. Already added a USB controller and running with an UC300, which seems to be excellent. I will add some control buttons and jogging wheel also, and will also upgrade the power supply. Maybe I will also change the spindle motor, which is quite weak, but doing what I want it to do.

Anyway, version one of my CNC served me well, but now it is time for a major upgrade. I will post pictures and video as well as more data later on, as I progress, but in the meantime here is a short one showing the Z axis and the differences between old and new.

This video is the first in a series, showing the upgrade of the weakest part in the first version, the Z axis.

Ooops... I am sorry... I have just noticed that I made a slight error in the video. When the new Z axis is shown the caption says "The new X axis" in large red letters. Of course, that's wrong, it is the new Z axis which this video is about. OK, the Z axis is on the X axis, but when I made this video the X axis was not really ready. Sorry about that.

Friday, 4 December 2015

Plastic or metal bayonets on the Nikon 1 lenses?

There was a discussion on a camera forum the other day about the type of bayonet Nikon is using on the Nikon 1 lenses which made me a bit curious. Some people claim that the majority of the lenses have plastic bayonet, others claim that some of the lenses have bayonets made of two parts, a metal ring and a plastic tube. To find out the truth I decided to check out the 10-30mm and the 30-110mm lenses.

After removing the screws and looking underneath it is clear that these two lenses have a 100% plastic bayonet, made out of one single molded piece. The circular marks underneath are typical marks after the molding process.

Never the less, it seems to be high quality, and while not as good as a metal bayonet could be, it doesn't really matter as long as it works. It is amazing that the surface still does not show any signs wear and tear, and it still looks like metal.

Please note, I have no idea if the majority, or perhaps all the Nikon 1 lenses have plastic bayonets, only these two.

The coating is pretty well done, but the fact that it is plastic will stop me from using my ring flash on those lenses, and I would advise every user of the V2-F1A to not use any ring flash on those lenses any more.

On the other hand, the FT1 is really well made and is definitely 100% made of metal, so if you intend to use a ring flash with the V2-F1A I would advise to use a real macro lens together with a ring flash.

If you are interested in the V2-F1A generic flash adapter for the Nikon 1 V series cameras then please read about it here:

Please click on the images if you wish to see them larger.

Wednesday, 18 November 2015

Testing the V2-F1A with an old high trigger voltage flash

One of my buyers complained about that the adapter he bought was not working, the camera simply not triggered the flash, nothing happened. He tried with another flash unit and the results were the same. The flash units were ProMaster FT 1700.

I don't have that flash so I can't test the same model but I immediately suspected that there must be something wrong with that flash model. It is not easy to find out data about that flash but eventually I found that most Internet evidence states that the flash has high trigger voltage. Of course, I immediately warned the user of V2-F1A about what I found out and asked him to measure the trigger voltage if he can and that he should test the camera and NEVER to use those flashes again until we know what happened. He confirmed that his camera was still working but never actually confirmed the trigger voltage. Never the less, I am certain that based on his fault description and the information found on the Internet the “problem” is isolated to that flash model and to the fact that it has indeed high trigger voltage.

The “problem” isn’t really a problem

The same evening I made some tests with one of my own old flashes with high trigger voltage. My tests resulted in confirmation of the same behavior he experienced, which is that when the adapter is attached to the flash the flash will not fire. I made some measurements and documented the results in a short video which I sent him the same evening.

Watch the short video above to see what is going on


This short video is made for demonstration only. The flash is not tested on the Nikon 1 V1 camera and I will not do that because I don't want to risk my camera. You should NEVER try this with your own V2-F1A, and absolutely never when the adapter is on the camera. There is a protection diode built in, but there is no warranty that it works with every flash every time.


The protection diode does what it is expected to do, i.e. protecting your camera from the high voltage. Without the diode his camera would have been destroyed by now.

Lessons YOU should have learned

There is an even more important conclusion, which is: Read the manual. The adapter is delivered with a short but clear manual stating NEVER to use the adapter with unknown flashes and that it is designed to be used with low trigger voltage flashes. Of course, you don’t have to buy the adapter to find that out, I never made a secret about this. This information and warning can be found all over this blog also, but the two most important posts are:

Worth repeating over and over again

I don’t know how many times this should be repeated, but because there is no information about the maximum possible trigger voltage the Nikon 1 cameras can handle the protection diode is necessary to protect the camera from getting destroyed when users ignore all information and go against common sense, trying to use just about any unknown flashes. If you do that, you do that on your own risk. There is a protection diode but how many times it can handle the high voltage is nothing I can answer.

The technical behavior of a Zener diode

When a Zener diode works normally it will clip the voltage at the level it is designed for. The diode in the V2 is a 33V diode, meaning that it will not allow voltages over 33V to pass through, this behavior can be seen in the video above.

When a Zener diode is exposed to very high voltage (a few thousand volts) the semiconductor in the diode becomes a conductor and will short circuit its terminals. If that happens then the V2-F1A becomes completely useless. Eventually the same thing will happen if the diode is exposed to high voltage in the lower range (few hundred volts) many times. There is no way to tell how many times you can abuse a diode, but sooner or later it will burn up. It can also result in the semiconductor burning up completely and in that case the protection diode won’t do any more protection, just like if it was not there at all. You can measure the existence and the health of the protection diode if you have the right knowledge but a normal user will not notice the absence of it unless he attaches a high voltage flash and tries to use it on your Nikon 1 camera.

Of course, it may result in a destroyed camera, but because I will never try this I don’t know and not sure if the camera can handle it without the diode.

Final words

The V2-F1A shall only be used with flashes designed to be used on digital cameras. Any other use is at your own risk. The adapter is NOT working with a high trigger voltage flash if the V2-F1A is fully functional. Don’t try this out, it is better to find out the trigger voltage before buying the adapter or buy a flash which is known to be having low trigger voltage.

Saturday, 19 September 2015

The making of V2-F1A adapter (milling)

I will publish some video clips showing the work behind the making of the V2-F1A adapter. This is the second in that series, showing the milling that must be done in each little plastic piece. It looks easy to make these adapters if you don't have a trained eye and a good imagination, but if you watch these videos you will realize that it isn't that easy after all.

Just a note, please don't ask about g-codes, measurement details, dimensions and so on. I will not assist anyone with making this adapter. No details, other than what you can find in these clips or on my blog, will be given away. I spent a lot of time in developing it and I have no wish to make it into a free product.

For more information about the V2-F1A, please read:

Wednesday, 2 September 2015

The making of V2-F1A adapter (drilling)

I will publish some video clips showing the work behind the making of the V2-F1A adapter. This is the first in that series, showing the drilling that must be done in each little plastic piece. It looks easy to make these adapters if you don't have a trained eye and a good imagination, but if you watch these videos you will realize that it isn't that easy after all.

Just a note, please don't ask about g-codes, measurement details, dimensions and so on. I will not assist anyone with making this adapter. No details, other than what you can find in these clips or on my blog, will be given away. I spent a lot of time in developing it and I have no wish to make it into a free product.

For more information about the V2-F1A, please read:

Sunday, 16 August 2015

The V1-F1A is dead. Long live the V2-F1A...

The news many people have been waiting for

It was a long journey, but finally the adapter is now ready. My CNC project, a machine necessary to make the adapters, is almost done, but ready enough to enable me to use it to make the adapters again, in better quality than before. I will keep the manufacturing volume fairly low because this is only a hobby activity for me so I have no possibilities to build up a large stock, but never the less, the adapter is available now again.

The new version does not look 100% identical to the V1-F1A, which is why I changed the name to V2-F1A. The design is changed to improve and eliminate the issues I had with the first version. The necessary changes does not mean change in functionality, only in looks.


The major changes are that the white knob is gone and that there is a 'glide guide' at the sides of the contact surface to improve accuracy for the tiny contact pin which triggers the flash. The contact surface is milled so that there is a slope which helps in guiding the contact, as well as the attaching of the adapter to the camera. It also increases the stability of the adapter when the adapter is fitted to the camera.

The white knob is gone for several reasons. In V1-F1A the knob gave the impression of a proper locking mechanism, which it was not, it was just meant as a GND contact for the trigger. Now, in the new version that is solved with a spring loaded ball contact at the bottom, just like the center contact in any other, traditional flash.

Some information about this adapter

The V2 in the name of V2-F1A has nothing to do with the Nikon 1 V2 camera model, it is just a version indicator, V1-F1A was version 1 and V2-F1A is version 2 of the functionally same adapter.

This adapter is designed to be used as a flash adapter on Nikon V1 (or equivalent) camera models. It will allow the user to attach a small standard flash unit with a maximum weight of 120 g (4.2 oz), including batteries. A cable or a radio trigger must be used if the user wishes to use heavier flashes. By not complying with this, the adapter or the camera may get damaged due to the weight and the forces involved. 

The hotshoe can be used to support a radio trigger. If you wish to trigger a heavier flash and don't have a radio trigger, you can use the PC contact on the side of the adapter to attach the flash to the adapter. TTL is not supported; you must use the flash in manual or in Auto mode if the flash you are using has that mode. Most flashes, but far from all, have a thyristor automatic mode; check out the manual of your flash. As an example, the Nikon SB-300 and SB-400 don't have this mode, so they can only be used in full manual mode with this adapter. As another example, the Nikon SB900 has this mode and can be used with the adapter but still not in iTTL mode.

Type of flashes the V2-F1A can be used with

Use the V2-F1A only with flashes which are designed to be used on digital cameras. Don't take a chance with any old flash because you may cause unrepairable damage to your camera, or in the best case, to the adapter. Old flashes can have several hundred Volts high trigger voltage, which would be directly hazardous on the Nikon 1 cameras, not only for the camera, but also for the users of the camera. These cameras are not made for those types of old flashes, so make sure you know your flash well. The adapter has a built in protection diode, but don't take chances, the protection diode is not a 100% warranty against far too high trigger voltages.

I have previously written about how to measure trigger voltage in case you feel confident about doing it on you own, read this article before you start.

How to order

If you are interested, please send me a mail using the contact information below. Please don't pay in advance before I confirmed that I have an adapter reserved for you.

After I received payment, I will need one work day to pack it and to ship it to you, using registered, traceable post. I will use the Swedish Post and will charge you what they are charging me.

Please note that I will only sell this unit to buyers from Australia,  the Americas (the whole continent), New Zealand, countries of European Union, Norway, Switzerland, Iceland, Liechtenstein, Jersey, Guernsey, Monaco, Aland, South Africa, Namibia, Botswana, Swaziland, Lesotho and Japan. Note that I make no exceptions made from this list.

Contact information

adapting(dot)camera at gmail(dot)com

Please note: the mail address above must be modified by you. You must replace the (dot) with real dots, the spaces before and after 'at' must be removed and the word 'at' must be replaced by @ sign. This is done to prevent internet robots from sending me spam mail. After your modification the mail address will look like:

Price and payment

I accept payments in EUR, GBP, USD or SEK. Payments must be made through PayPal, no direct money transfer, checks or any other means are accepted. You are paying the PayPal fee, payments without the fee will not be accepted. Currently the PayPal fee is an additional 3.4% + a fixed small sum on top of of the total costs. Shipping and handling costs will be added, this cost is not possible for me to predict, I will charge you what the Swedish Post charges me, which at this moment is 13 EUR or 15 USD for shipments outside Sweden. I will ship with registered, traceable post only.

The price for each unit is 84 EUR, 92 USD or 785 SEK, whichever you prefer. The price may change as exchange rates are changing. This price excludes the shipping and handling, the total price will be calculated when I have your personal data.

Prices and the terms are non-negotiable, if you think this is not acceptable for you or you think the price is too high, please don't buy it.

Please note that I no longer accept payments in GBP. If you are a UK resident you need to use the other currencies.

A final note about the V2-F1A

This is a do-it-yourself product. No warranty is given, other than that I guaranty I tested the flash adapter, not only before shipping it, but also during each stage the manufacturing process, and I guaranty that it is working on my Nikon V1 when I ship it. I have no possibilities to test it on the Nikon V2, V3 or any other future models since I only have the V1.

Please note also that the manufacturing marks and scratches on the adapter are the results of DIY manufacturing using a CNC mill. The marks and scratches are not defects and will not affect the functionality.

Remember also that a deal is a deal, if you bought it it is yours. I will NOT take it back, not even for a reduced price. This may sound harsh, but I have bad experience and this is the "lessons learned" from that experience. It is up to you to decide to buy it, and if the conditions are not acceptable, please don't buy this adapter.


Apparently there are some false rumors created on the internet, at this moment I won't mention which site, saying that the latest firmware of Nikon 1 V1 camera, which is 1.40 at the moment, prevents the camera from triggering a non-Nikon flash. This "information" is a lie created by persons who have no clue, the adapter works fine even with the latest firmware. I keep my camera gear up to date to make sure I test everything with the firmware the equipment is recommended to be used with by Nikon. In other words, at this moment every firmware release works with this adapter and I honestly don't expect Nikon to ever create one which would stop this adapter from functioning on your camera, at least not until they start selling original Nikon flash adapters.

Please note that the images are click-able. If you are interested in seeing more detail, just click on the images and larger ones will become visible for you.